
Can AI create
unit tests?

Produced by

An exploration of LLMs and the future of
software testing.

Introduction

Experiment 1: Which LLM writes the best unit tests?

Experiment 2: Testing code with standards

Experiment 3: Improving Claude by providing feedback

Experiment 4: Can an LLM make code more testable?

Experiment 5: Further analysis of tests from specification

Conclusion

About Bluefruit Software

Contents

Unit tests validate the behaviour of individual components within software,
helping developers catch bugs early, reduce defects, and provide a safety
net when refactoring or enhancing code.

However, creating a comprehensive suite of these tests can be time-
consuming and repetitive. In a well-tested codebase, it's common to have
more test code than source code due to the detailed nature of unit testing.
A device might require thousands of individual unit tests, which can take
weeks to write and maintain as the codebase evolves. Additionally,
achieving acceptable coverage requires testers to have detailed knowledge
of the system, attention to edge cases, and a high degree of persistence.
Given these constraints, the potential for AI to automate the generation of
unit tests is of significant interest.

We set out to discover the effectiveness of large language models (LLMs) in
generating unit tests, and assess their ability to produce reasonable, useful,
and comprehensive test cases.

After several weeks of experiments, we determined that, while it’s still early
days, AI already offers a promising solution to reduce the time and effort
involved in test creation.

Introduction

Which LLM writes the
best unit tests?

Experiment 1

Our initial focus was to determine which LLMs produced the most effective
unit tests, both in terms of code coverage and mutation scores.

Method
We evaluated multiple LLMs: ChatGPT-4o, Claude Opus, Llama 3.1 and
Gemini 1.5, using the GoogleTest framework. The subject of our tests was
TinyXML2, an open-source C++ XML parser, chosen for its compactness and
availability of hand-written unit tests for comparison

We assessed the project’s hand-written unit tests for code coverage and
mutation score, and then got the LLMs to write replacement tests.

https://github.com/leethomason/tinyxml2

llvm-cov
Code coverage utility that
informs Mull which code to
mutate. It also provides a
secondary statistic on the quality
of unit tests.

Google Test (gtest)
A specialised C++ testing
framework developed that allows
developers to write and run unit
tests for their C++ code.

Mull
Mutation testing tool using LLVM
API to inject mutations at
compile time. It accounts for
code coverage, meaning only
tested code is mutated.

Cover Agent
A CLI tool that iteratively guided
AI models by providing coverage
feedback and refining the
generated tests based on
predefined goals (e.g., a target
coverage percentage).

Tools used

Results
The hand-written tests were superior to all four LLMs, scoring significantly
higher for function coverage, line coverage, region coverage, and branch
coverage.

Of the LLMs, ChatGPT achieved the highest coverage score, with Claude a
close second. However, when it came to mutation scoring, Claude
performed significantly higher than the other models, detecting almost as
many bugs as the hand-rolled unit tests.

Function
Coverage

Line
Coverage

Region
Coverage

Branch
Coverage

Mutation
score

 GPT

 39.1%

 36.9%

 40.0%

 29.6%

 52%

 Claude

 35.2%

 33.0%

 36.2%

 25.1%

 68%

 Llama

 27.7%

 23.7%

 27.0%

 16.4%

 11%

 Gemini

 30.7%

 26.4%

 27.8%

 18.0%

 54%

 Human

 94.1%

 85.9%

 88.1%

 76.2%

 78%

Mutation score Branch coverage Region coverage Line coverage

Function coverage

Llama ChatGPT Gemini Claude Human
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)

Coverage and mutation scores for unit tests
written by LLMs and human

Testing code with
standards

Experiment 2

For the next part of the study, we explored whether LLMs would create
better unit tests based on a standard/specification rather than source code.

Method
For this experiment we selected TinyJSON, a lightweight JSON parser and
generator for C and C++, with a single header/source, and written using
TDD.

In one condition, we provided Claude with the JSON specification and
header file and prompted it to write a set of unit tests using gtest to cover as
much of the specification as possible. In another condition, we prompted
Claude to create its unit tests based on the source code.

Results
Unit tests generated from the specification performed better than those
generated from source code. They were readable and more comprehensive,
covering key JSON features like parsing nested structures and handling
various data types​. However, Claude did require some coaching around
broken tests.

https://github.com/pbhogan/TinyJSON

Tests generated from source code tended to focus on lower-level functions, were less
readable, and neglected critical functionality such as array handling.

Basing unit tests on a clear specification appears to be a more reliable method for
achieving broad coverage and protecting against code mutations. This finding suggests
that AI models may perform better when they are provided with high-level guidance that
allows them to generate tests that cover a wider range of functional scenarios.

Like humans, AI would seem to be most effective while using a test-first approach.

The hand-written unit tests included with the TinyJSON repo still scored higher than
Claude across the board.

First attempt From source code

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Comparison of Claude unit test results:
First attempt Vs Retry

Sc
or

e
(%

)

Improving results by
providing feedback

Experiment 3

Our next study explored whether feedback could improve LLM performance in generating
unit tests. Specifically, we examined whether allowing Claude to assess the results of its
initial tests and then generate a second round of tests could improve coverage and
mutation scores​.

Method
Claude was given the results of its initial test suite, including coverage gaps and failed
tests, and was prompted to improve its output. We then compared this to its previous
output.

Results
While coverage improved slightly on a second attempt, the gains were modest. Claude
required highly specific prompts to address the identified gaps, and additional
improvements often led to test failures that required further back-and-forth refinement.
Although this method shows potential, it suggests that LLMs in their current state still
struggle when presented with more complex coding tasks.

Human Claude

Fu
nctio

n covera
ge

Lin
e covera

ge

Bra
nch covera

ge

Mutatio
n score

0%

20%

40%

60%

80%

100%

Crucially, while hand-written tests offered greater coverage, Claude actually generated
0.6% unique tests, suggesting that an experienced human software tester, leveraging AI
would provide the best overall result.

Sc
or

e
(%

)
Comparison of unit test results: Human Vs Claude

Can an LLM make code
more testable?

Experiment 4

TinyJSON was written using TDD and is, therefore, inherently testable. However, in real-
world scenarios where unit tests are required, it is unlikely that the source code will be
written with unit testing in mind.

Can an LLM adjust the code to make it more test-friendly?

Method
For this study, we found a project on GitHub that had not been unit tested, MOS6502
Emulator in C++, and asked Claude Opus to write some tests for it and assess quality. We
then asked the LLM to make adjustments to the code to improve testability before
writing the tests again. Finally, we assessed and compared the results.

Results
This did not go well. Claude struggled to predict what the register values would be, it
kept getting the program counter wrong, and couldn’t fix these problems—even after
several prompted iterations. In trying to correct its mistakes, Claude introduced
significant complexity, creating long,

https://github.com/gianlucag/mos6502
https://github.com/gianlucag/mos6502

unreadable tests.

We were forced to conclude that complex programming subjects such as this may be
beyond current LLMs.

Experiment 4.5: Reduced complexity

Claude had failed to refactor TinyJSON, but how would it fare on something easier?

Method
We found a simpler piece of code—a Tetris game written in C++. Claude was asked to
write some rests on an untested, no-unit-test class representing a tetramino (block). We
then asked it to make adjustments to the code to improve testability before writing the
tests again. Finally, we assessed and compared the results.

Results
Claude managed to achieve a function coverage of 100%, however this is likely due to
the simplicity of the tetromino class. The line, branch, and mutation coverage remained
low, indicating insufficient test depth and effectiveness.

It struggled with setting up mocks correctly, often assigning function names that did not
match those in the class headers, leading to functions that were never called. The initial
tests failed to execute properly, requiring manual corrections and multiple iterations to
resolve these issues. Claude also seemed to have difficulty inferring the specific
requirements and behaviours of the tetromino class, which impacted the relevance and
accuracy of the generated tests. It might have benefited from having some requirements
for this class.

https://github.com/Kofybrek/Tetris

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)
Coverage and mutation scores for unit tests after code

improvements

Code recommendations

Given the source code for the tetromino class and asked for improvements, Claude
Opus came back with the following suggestions:

Heavy reliance on global state: The class uses global constants like COLUMNS and
ROWS, which makes it difficult to test the class in isolation.

Lack of dependency injection: The class directly uses functions like get_tetromino()
and get_wall_kick_data(), making it hard to mock these dependencies for testing.

Complex methods with multiple responsibilities: Some methods, like rotate(),
perform multiple operations and have complex logic, making them difficult to test
thoroughly.

Limited encapsulation: The class exposes internal state through methods like
get_minos(), which can make it challenging to maintain invariants and test state
changes.

Absence of interfaces: The class doesn’t implement any interfaces, which limits the
ability to use polymorphism and create mock objects for testing.

Tight coupling with the game matrix: Many methods take a constant reference to the
game matrix, creating a strong dependency on the game state.

Lack of clear separation between game logic and tetromino behavior: The class
mixes concerns related to tetromino movement and game rules.

No clear way to set up specific test scenarios: The class doesn’t provide mechanisms
to easily set up specific states for testing edge cases.

Code changes
Claude then performed the following code changes:

Added dependency injection to facilitate better mocking.

Replaced global constants with constructor parameters.

Added an interface for the game board.

Broke up some larger methods into more testable units

The results showed a 15% increase in line coverage, but branch coverage decreased
slightly and obtaining a mutation score was not feasible due to numerous failing tests.
Several iterations were undertaken to address these failures by consulting the model,
but progress was limited. The model struggled with the system setup and introduced a
dependency injection mechanism that it could not effectively use.

As the iterations to fix the issues continued, the source code began to change
significantly, leading to decreased trust in the model's alterations. There were concerns
that these changes might be breaking the original game logic. Without existing tests in
the repository, it was impossible to verify if any functionality had been compromised.
Despite efforts to enhance testability, the model continued to face difficulties, and its
effectiveness diminished in subsequent attempts.

Further analysis of tests
from specification

Experiment 5

In previous studies, Claude seemed to perform better when asked to write tests based
on specification, rather than from the source code. We explored whether the same was
true of other LLMs.

Method
In one condition, we provided ChatGPT 4, ChatGPT 4o, Llama 3.1 70b, and ChatGPT o1-
preview with the TinyJSON source code. In the other, we provided them models with the
specifications. We then compared the results of the hand-written tests written by the
developers using TDD.

Results
GPT4 performed slightly better when given the source code. The exception being the
mutation score which was better when written from the specification. Overall, the
performance was not very good.

GPT 4 (from spec) GPT 4 (from source) Human

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)
GPT 4 coverage and mutation scores for unit tests
written from specification and from source code

GPT 4o performed slightly better than GPT4 overall, with the source code condition
achieving better scores across all effectiveness measures.

GPT 4o (from spec) GPT 4o (from source) Human

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

GPT 4o coverage and mutation scores for unit tests
written from specification and from source code

Sc
or

e
(%

)

In the source code condition, Llama outperformed the GPT models in all but branch
coverage.

In the specifications condition, Llama produced lots of failing tests. We went through a
few iterations of feeding back errors and asking it to fix them, but this was not effective
and, as such, the condition did not yield a mutation score.

Llama 3.1 70b (from spec) Llama 3.1 70b (from source) Human

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)

Llama coverage and mutation scores for unit tests
written from specification and from source code

Released as we conducted this experiment, ChatGPT 01 produced by far the best
results. Like Claude, it performed best writing tests from specifications rather than
source code. However, its tests performed better than Claude's in every way.

Claude (from spec) GPT o1 (from spec) Human

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)

Claude Vs GPT o1 coverage and mutation scores
for unit tests written from specification

GPT o1 (from spec) GPT o1 (from source) Human

Function coverage Line coverage Branch coverage Mutation score
0%

20%

40%

60%

80%

100%

Sc
or

e
(%

)
GPT o1 Coverage and mutation scores for unit tests
written from specification and from source code

Conclusion

Our study demonstrates that AI has the potential to significantly streamline the process
of creating and maintaining unit tests—and the technology is improving constantly. By
leveraging advanced language models, we can already reduce the time and effort
required to ensure software reliability, allowing teams to focus on innovation and
development.

However, LLMs are still just tools. Without expert prompting and oversight, the work they
produce has little value. Experienced software developers and testers are still essential
to the creation of high-quality, testable, and thoroughly tested software.

If your organisation is looking to enhance its software testing processes, we can help.
Get in touch to learn how we can support your software development and testing needs.

https://bluefruit.co.uk/contact-us/

+44 (0) 333 577 7111

info@bluefruit.co.uk

www.bluefruit.co.uk

tel:+443335777111
mailto:info@bluefruit.co.uk
http://www.bluefruit.co.uk/

